Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(19): 13113-13125, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38700843

RESUMEN

Defect engineering in metal-organic frameworks (MOFs) has gained worldwide research traction, as it offers tools to tune the properties of MOFs. Herein, we report a novel 2-fold interpenetrated Bi-based MOF made of a tritopic flexible organic linker, followed by missing-linker defect engineering. This procedure creates a gradually augmented micro- and mesoporosity in the parent (originally nonporous) network. The resulting MOFs can tolerate a remarkable extent of linker vacancy (with absence of up to 60% of linkers per Bi node) created by altering the crystal-growth rate as a function of synthesis temperature and duration. Owing to the enhanced porosity and availability of the uncoordinated Lewis acidic Bi sites, the defect-engineered MOFs manifested improved surface areas, augmented CO2 and water vapor uptake, and catalytic activity. Parallel to this, the impact of defect engineering on the optoelectronic properties of these MOFs has also been studied, offering avenues for new applications.

2.
IUCrJ ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38727171

RESUMEN

Although COF-300 is often used as an example to study the synthesis and structure of (3D) covalent organic frameworks (COFs), knowledge of the underlying synthetic processes is still fragmented. Here, an optimized synthetic procedure based on a combination of linker protection and modulation was applied. Using this approach, the influence of time and temperature on the synthesis of COF-300 was studied. Synthesis times that were too short produced materials with limited crystallinity and porosity, lacking the typical pore flexibility associated with COF-300. On the other hand, synthesis times that were too long could be characterized by loss of crystallinity and pore order by degradation of the tetrakis(4-aminophenyl)methane (TAM) linker used. The presence of the degradation product was confirmed by visual inspection, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). As TAM is by far the most popular linker for the synthesis of 3D COFs, this degradation process might be one of the reasons why the development of 3D COFs is still lagging compared with 2D COFs. However, COF crystals obtained via an optimized procedure could be structurally probed using 3D electron diffraction (3DED). The 3DED analysis resulted in a full structure determination of COF-300 at atomic resolution with satisfying data parameters. Comparison of our 3DED-derived structural model with previously reported single-crystal X-ray diffraction data for this material, as well as parameters derived from the Cambridge Structural Database, demonstrates the high accuracy of the 3DED method for structure determination. This validation might accelerate the exploitation of 3DED as a structure determination technique for COFs and other porous materials.

3.
Org Lett ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696160

RESUMEN

The gold(I)-catalyzed dearomative cyclopentannulation of various indoles with 2-ethynyl-1,3-dithiolane is reported. The method generates three new stereocenters with excellent control of relative stereochemistry and is tolerant of diverse functionalization and substitution patterns on the indoles. The obtained cyclopentane-fused indolines allow for interesting subsequent synthetic manipulations, giving rise to fully substituted cyclopentanes with control of the relative stereochemistry of all five stereocenters. The reported reaction illustrates and elucidates a mechanistic dichotomy underlying gold(I)-catalyzed reactions of 2-ethynyl-1,3-dithiolane.

4.
Dalton Trans ; 53(18): 7939-7945, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38646683

RESUMEN

A series of novel dinuclear NHC-gold-thiolato and -alkynyl complexes bearing aromatic linkers were successfully synthesized by an efficient and simple synthetic route. The catalytic activity of these complexes was tested in a lactonization reaction. The reaction proceeds in high efficiency, in short reaction time and under mild conditions, and is complementary to existing methods. Furthermore, the digold(I)-thiolato derivatives exhibit remarkable cytotoxicity towards several cancer cell lines.

5.
Dalton Trans ; 53(18): 8051, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38655685

RESUMEN

Correction for 'Simple synthetic access to [Au(IBiox)Cl] complexes' by Ekaterina A. Martynova et al., Dalton Trans., 2023, 52, 7558-7563, https://doi.org/10.1039/D3DT01357J.

6.
Chem Sci ; 15(12): 4571-4580, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38516071

RESUMEN

Energy transfer (EnT) photocatalysis has emerged as a valuable tool for constructing complex organic scaffolds via [2 + 2]-cycloaddition reactions. Herein, we present the use of [Au(SIPr)(Cbz)] as a sensitizer for the [2 + 2]-cycloaddition of coumarins and unactivated alkenes. Widely used in EnT catalysis, iridium and organic sensitizers proved less efficient under the examined catalytic conditions. The developed protocol permits the synthesis of cyclobutane-fused chromanones from readily available starting materials. A wide range of alkenes and substituted coumarins, including naturally occurring compounds, were reacted under mild conditions leading to structurally complex products with good functional group tolerance. Mechanistic studies reveal a previously overlooked reaction pathway for energy transfer catalysis involving coumarins.

7.
Inorg Chem ; 63(12): 5568-5579, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38470041

RESUMEN

Two-dimensional (2D) hybrid organic-inorganic perovskites constitute a versatile class of materials applied to a variety of optoelectronic devices. These materials are composed of alternating layers of inorganic lead halide octahedra and organic ammonium cations. Most perovskite research studies so far have focused on organic sublattices based on phenethylammonium and alkylammonium cations, which are packed by van der Waals cohesive forces. Here, we report a more complex organic sublattice containing benzotriazole-based ammonium cations packed through interdigitated π-π stacking and hydrogen bonding. Single crystals and thin films of four perovskite derivatives are studied in depth with optical spectroscopy and X-ray diffraction, supported by density-functional theory calculations. We quantify the lattice stabilization of interdigitation, dipole-dipole interactions, and inter- as well as intramolecular hydrogen bonding. Furthermore, we investigate the driving force behind interdigitation by defining a steric occupancy factor σ and tuning the composition of the organic and inorganic sublattice. We relate the phenomenon of interdigitation to the available lattice space and to weakened hydrogen bonding to the inorganic octahedra. Finally, we find that the stabilizing interactions in the organic sublattice slightly improve the thermal stability of the perovskite. This work sheds light on the design rules and structure-property relationships of 2D layered hybrid perovskites.

8.
J Am Chem Soc ; 146(12): 8659-8667, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38407928

RESUMEN

The solid-state synthesis of single-crystalline organic polymers, having functional properties, remains an attractive and developing research area in polymer chemistry and materials science. However, light-triggered topochemical synthesis of crystalline polymers comprising an organoboron backbone has not yet been reported. Here, we describe an intriguing example of single-crystal-to-single-crystal (SCSC) rapid photosynthesis (occurs on a seconds-scale) of two structurally different linear organoboron polymers, driven by environmentally sustainable visible/sun light, obtained from the same monomer molecule. A newly designed Lewis acid-base type molecular B ← N organoboron adduct (consisting of an organoboron core and naphthylvinylpyridine ligands) crystallizes in two solid-state forms featuring the same chemical structure but different 3D structural topologies, namely, monomers 1 and 2. The solvate molecule-free crystals of 1 undergo topochemical photopolymerization via an unusual olefin-naphthyl ring [2 + 2] cyclization to yield the single crystalline [3]-ladderane polymer 1P growing along the B ← N linkages, accompanied by instantaneous and violent macroscopic mechanical motions or photosalient effects (such as bending-reshaping and jumping motions). In contrast, visible light-harvesting single crystals of 2 quantitatively polymerize to a B ← N bond-stabilized polymer 2P in a SCSC fashion owing to the rapid [2 + 2] cycloaddition reaction among olefin double bonds. Such olefin bonds in the crystals of 2 are suitably preorganized for photoreaction due to the presence of solvate molecules in the crystal packing. Single crystals of 2 also show photodynamic jumping motions - in response to visible light but in a relatively slower fashion than the crystals of 1. In addition to SCSC topochemical polymerization and dynamic motions, both monomer crystals and their single-crystalline polymers feature green emissive and short-lived room-temperature phosphorescence properties upon excitation with visible-light wavelength.

9.
Chemistry ; 30(19): e202303072, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308544

RESUMEN

Using a straightforward sequence of diphosphonylation and a Pd-catalysed concerted-metalation-deprotonation (CMD), a synthetic strategy towards polyaromatic phosphorus containing heterocycles was developed. Herein, we report the synthesis and characterization of new azaphosphaphenalenes, using easily accessible palladium catalysts and starting materials. The key tetrahydroquinoline intermediates of the reaction were synthesised via a fast and effective procedure and could be isolated as such, or further reacted towards the target polyaromatic structures. The obtained products showed interesting luminescent properties and their emission, excitation and quantum yields were evaluated.

10.
ACS Med Chem Lett ; 15(1): 81-86, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38229744

RESUMEN

Various purine-based nucleoside analogues have demonstrated unexpected affinity for nonpurinergic G protein-coupled receptors (GPCRs), such as opioid and serotonin receptors. In this work, we synthesized a small library of new 7-deazaadenosine and pyrazolo[3,4-d]pyrimidine riboside analogues, featuring dual C7 and N6 modifications and assessed their affinity for various GPCRs. During the course of the synthesis of 7-ethynyl pyrazolo[3,4-d]pyrimidine ribosides, we observed the formation of an unprecedented tricyclic nucleobase, formed via a 6-endo-dig ring closure. The synthesis of this tricyclic nucleoside was optimized, and the substrate scope for such cyclization was further explored because it might avail further exploration in the nucleoside field. From displacement experiments on a panel of GPCRs and transporters, combining C7 and N6 modifications afforded noncytotoxic nucleosides with micromolar and submicromolar affinity for different GPCRs, such as the 5-hydroxytryptamine (5-HT)2B, κ-opioid (KOR), and σ1/2 receptor. These results corroborate that the novel nucleoside analogues reported here are potentially useful starting points for the further development of modulators of GPCRs and transmembrane proteins.

11.
Chemistry ; 30(2): e202302545, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37840008

RESUMEN

In recent years, there has been significant focus on investigating and controlling chiral self-assembly, specifically in the context of enantiomeric separation. This study explores the self-assembly behavior of 4-dodecyl-3,6-di(2-pyridyl)pyridazine (DPP-C12) at the interface between heptanoic acid (HA) and highly oriented pyrolytic graphite (HOPG) using a combination of scanning tunneling microscopy (STM) and multiscale molecular modeling. The self-assembled monolayer structure formed by DPP-C12 is periodic in one direction, but aperiodic in the direction orthogonal to it. These structures resemble 1D disordered racemic compounds. Upon introducing palladium [Pd(II)] ions, complexing with DPP-C12, these 1D disordered racemic compounds spontaneously transform into 2D racemic conglomerates, which is rationalized with the assistance of force-field simulations. Our findings provide insights into the regulation of two-dimensional chirality.

12.
Org Biomol Chem ; 21(40): 8117-8124, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37786324

RESUMEN

We report a general method to effect all-carbon (3 + 2) cycloadditions that can elaborate cyclopentenes from a range of olefins. The required dithioallyl cation reagents can be generated in a newly developed mild protocol starting from 2-allyloxypyridine precursors, thus avoiding the use of strong Brønsted acids. The novel method significantly expands the substrate scope, which now also includes acid-sensitive olefins, and thus enables the preparation of previously inaccessible spiro-fused scaffold types from simple and readily available starting materials.

13.
J Org Chem ; 88(20): 14504-14514, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37812456

RESUMEN

A stereoselective dearomative cyclopentannulation of benzofurans is reported. A previously reported dearomative (3 + 2) cycloaddition of indoles with 1,4-dithiane-fused allyl cations was found to lack stereoselectivity when more substituted cyclopentene rings are targeted. However, for benzofuran substrates, excellent levels of stereoselectivity were observed for the same allyl cation reagents under very similar reaction conditions. In this full account, we provide a mechanistic rationale and some design principles that govern the stereoselectivity of the intriguing dearomative transformations using dithioallyl cations and demonstrate how the stereoselectivity depends on electronic factors of the starting materials. The stereoselective methodology is also applied in a straightforward dearomative synthesis of the tricyclic sesquiterpenoid natural product aplysin and its analogues, starting from a simple benzofuran.

14.
Int J Mol Sci ; 24(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37446308

RESUMEN

A supramolecular self-assembly of semiconducting polymers and small molecules plays an important role in charge transportation, performance, and lifetime of an optoelectronic device. Tremendous efforts have been put into the strategies to self-organize these materials. In this regard, here, we present the self-organization of terthiophene and its methyl alcohol derivative with 4,4'-bipyridine (44BiPy). An unexpected 2D layered organization of 5,5″-dimethyl-2,2':5',2″-terthiophene (DM3T) and 44BiPy was obtained and analyzed. Single-crystal X-ray diffraction analysis revealed that DM3T and 44BiPy consist of stacked, almost independent, infinite 2D layers while held together by weak hydrogen bonds. In addition to this peculiar supramolecular arrangement of these compounds, the investigation of their photophysical properties showed strong fluorescence quenching of DM3T by 44BiPy in the solid state, suggesting an efficient charge transfer. On the other hand, the methyl alcohol derivative of terthiophene, DM3TMeOH, organized in a closed cyclic motif with 44BiPy via hydrogen bonds.


Asunto(s)
Metanol , Tiofenos , Enlace de Hidrógeno , Cristalografía por Rayos X
15.
ACS Appl Mater Interfaces ; 15(31): 37696-37705, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37498184

RESUMEN

In this study, we report hybrid crystalline lanthanide-containing 3D covalent organic framework (Ln@3D COF) materials that are suitable for temperature sensing applications. Different routes to obtain these hybrid materials were tested and compared for material quality and thermometric properties. In the first approach, a bipyridine-containing 3D COF (Bipy COF) was grafted with a range of visible emitting lanthanide (Eu3+, Tb3+, Dy3+, and Eu3+/Tb3+) ß-diketonate complexes. In the second approach, a novel nanocomposite material was prepared by embedding NaYF4:Er,Yb nanoparticles on the surface of a nonfunctionalized 3D COF (COF-300). To the best of our knowledge, the luminescent materials developed here are the first 3D COFs to be tested as ratiometric temperature sensors. In fact, for the Bipy COF, two different types of thermometers were tested (the Eu3+/Tb3+ system and a rare Dy3+ system), with both showing excellent temperature sensing properties. The reported NaYF4:Er,Yb/COF-300 nanocomposite material combines upconverting nanoparticles with 3D COFs, similar to previously reported metal organic framework (MOF) nanocomposite materials; however, this type of hybrid material has not yet been explored for COFs. As such, our findings open a new pathway toward potential multifunctional materials that can combine thermometry with other modalities, such as catalysis or drug delivery, in just one nanocomposite material.

16.
Dalton Trans ; 52(29): 9908-9912, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37458362

RESUMEN

The 4-RN-1,3-Ar2-imidazolium salt, R = iPr, tBu, Ar = Mes, Dipp, Mes = mesityl, Dipp = 2,6-bis-diisopropyl-phenyl was metalated by AuI at the C2-, C5- and 4-RN positions depending on the reactants and conditions employed; a rare direct rearrangement of a AuI aminide to an abnormal imidazol-5-ylidene AuI complex was also observed and based on a DFT study it may involve TfO- facilitated H+ transfer.

17.
Dalton Trans ; 52(22): 7558-7563, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37191083

RESUMEN

Green and sustainable access to chiral and achiral gold-IBiox complexes is reported. The gold complexes were synthesized using a simple, air-tolerant, weak base protocol carried out in a green solvent. Their catalytic activity was examined in the hydroamination of alkynes. The steric protection afforded the gold center by these ligands was quantified using the %Vbur model and compared with the most commonly encountered NHCs.

18.
Chemistry ; 29(40): e202301259, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37196153

RESUMEN

Herein, we report the catalytic activity of a series of platinum(II) pre-catalysts, bearing N-heterocyclic carbene (NHC) ligands, in the alkene hydrosilylation reaction. Their structural and electronic properties are fully investigated using X-ray diffraction analysis and nuclear magnetic resonance spectroscopy (NMR). Next, our study presents a structure-activity relationship within this group of pre-catalysts and gives mechanistic insights into the catalyst activation step. An exceptional catalytic performance of one of the complexes is observed, reaching a turnover number (TON) of 970 000 and a turnover frequency (TOF) of 40 417 h-1 at 1 ppm catalyst loading. Finally, an attractive solvent-free and open-to-air alkene hydrosilylation protocol, featuring efficient platinum removal (reduction of residual Pt from 582 ppm to 5.8 ppm), is disclosed.

19.
Angew Chem Int Ed Engl ; 62(28): e202304722, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37171876

RESUMEN

In the quest for essential energy solutions towards an ecological friendly future, the transformation of visible light/solar energy into mechanical motions in metal-free luminescent crystals offers a sustainable choice of smart materials for lightweight actuating, and all-organic electronic devices. Such green energy-triggered photodynamic motions with room temperature phosphorescence (RTP) emission in molecular crystals have not been reported yet. Here, we demonstrate three new stoichiometrically different Lewis acid-base molecular organoboron crystals (PS1, PS2, and PS3), which exhibit rapid photosalient effects (ballistic splitting, moving, and jumping) under both ultraviolet (UV) and visible light associated with quantitative single-crystal-to-single-crystal (SCSC) [2+2] cycloaddition of preorganized olefins. Furthermore, these systems respond to sunlight and mobile (white) flashlight with a complete SCSC transformation in a relatively slow fashion. Remarkably, all PS1, PS2, and PS3 crystals display visible light-promoted dynamic green RTP as their emission peaks promptly blue-shift, due to instantaneous photomechanical effects. Time-dependent structural mapping of intermediate photoproducts during fast SCSC [2+2] photoreaction, by X-ray photodiffraction, reveals a rationale for the origin of these photodynamic motions associated with rapid topochemical transformations. The reported light-driven behavior (mechanical motions, dynamic phosphorescence, and topochemical reactivity), is considered advantageous for the strategic design of stimuli-responsive multi-functional crystalline materials.

20.
Chem Sci ; 14(20): 5405-5414, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37234890

RESUMEN

Paving the way towards new functional materials relies increasingly on the challenging task of forming organic-inorganic hybrid compounds. In that regard, discrete atomically-precise metal-oxo nanoclusters have received increasing attention due to the wide range of organic moieties that can be grafted onto them through functionalization reactions. The Lindqvist hexavanadate family of clusters, such as [V6O13{(OCH2)3C-R}2]2- (V6-R), is particularly interesting due to the magnetic, redox, and catalytic properties of these clusters. However, compared to other metal-oxo cluster types, V6-R clusters have been less extensively explored, which is mainly due to poorly understood synthetic challenges and the limited number of viable post-functionalization strategies. In this work, we present an in-depth investigation of the factors that influence the formation of hybrid hexavanadates (V6-R HPOMs) and leverage this knowledge to develop [V6O13{(OCH2)3CNHCOCH2Cl}2]2- (V6-Cl) as a new and tunable platform for the facile formation of discrete hybrid structures based on metal-oxo clusters in relatively high yields. Moreover, we showcase the versatility of the V6-Cl platform through its post-functionalization via nucleophilic substitution with various carboxylic acids of differing complexity and with functionalities that are relevant in multiple disciplines, such as supramolecular chemistry and biochemistry. Hence, V6-Cl was shown to be a straightforward and versatile starting point for the formation of functional supramolecular structures or other hybrid materials, thereby enabling their exploration in various fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...